
A STUDY OF COMBINATORIAL ISSUES IN A SPARSE HYBRID SOLVER

ERIK G. BOMAN AND SIVASANKARAN RAJAMANICKAM

ABSTRACT. The solution of large sparse linear systems is an important kernel in scientific computing.
Hybrid direct-iterative methods provide a compromise between the robustness of direct solvers and the
lower memory requirements of iterative solvers. We show that combinatorial algorithms such as partition-
ing, ordering, and coloring play an important role in hybrid solvers. We identify combinatorial issues and
study the effects of partitioning in a new hybrid solver, ShyLU.

1. INTRODUCTION

The solution of large, sparse systems of linear systems is an important part of many computations
in computational science and engineering. There are two main types of solvers: direct and iterative.
While direct solvers are very robust, they do not scale well. Iterative solvers are more scalable and
better suited for parallel computing but are less robust. Recently, hybrid solvers have become popular
for some applications. Hybrid solvers attempt to combine the robustness of direct solvers with the lower
memory requirements and more parallel approach of iterative solvers. Examples of such hybrid solvers
include HIPS [1] and PDSlin [2]. As part of a collaboration between the Combinatorial Scientific
Computing and Petascale Simulations (CSCAPES) SciDAC institute and the Extreme-scale Algorithms
and Software Institute (EASI), we have developed a new hybrid solver, ShyLU [3]. ShyLU is built on
Trilinos and uses the Isorropia and Zoltan packages for partitioning and ordering of sparse matrices. We
summarize the design of ShyLU and then discuss in detail some of the combinatorial issues that affect
parallel performance.

2. SHYLU DESIGN

The Schur complement framework is a general way to solve linear systems. Much work has been
done in this area; see, for example, [4, Ch.14] and the references therein.

Let Ax = b be the system of interest. Suppose A has the form

A =

(
D C
R G

)
,(1)

where D and G are square and D is nonsingular. The Schur complement after elimination of the top
row is S = G−R∗D−1C. Solving Ax = b then consists of the three solves: Dz = b1, Sx2 = b2−Rz
and Dx1 = b1 − Cx2 where the vector subscripts correspond to the matrix block rows.

The algorithms that use this formulation to solve the linear system in an iterative method or a hybrid
method essentially use three basic steps. We call this the Schur complement framework.

2.1. Partitioning. The key idea is to permute A to get a D that is easy to factor. In this case, D =
diag(D1, . . . , Dk) is a block diagonal matrix,R is a row border, andC is a column border. For example,
the symmetric case in Figure 1(b) is identical to the Schur complement formulation where we use a
symmetric permutation PAP T to get a doubly bordered block form. In the nonsymmetric case, we find
the unsymmetric permutation PAQ, to get the singly bordered block diagonal form; see Figure 1(a).
The nonsymmetric case can be solved by using the same Schur complement formulation even though it

Scalable Algorithms Department, Sandia National Laboratories, Albuquerque, NM. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the United States Department
of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

1



2 ERIK G. BOMAN AND SIVASANKARAN RAJAMANICKAM

FIGURE 1. Partitioning and reordering of a (a) nonsymmetric and (b) symmetric matrix.

appears different. Several variations of graph partitioning can be used to find the permutations and the
block bordered structure. In Section 4 we compare the various options and their effects on the hybrid
solver.

2.2. Sparse Approximation of S. Once D is factored (either exactly or inexactly), the crux of the
Schur complement approach is to solve for S iteratively. S is typically much smaller than A and S is
generally better conditioned than A. However, S is typically dense making it expensive to compute and
store. All algorithms compute a sparse approximation of S to be used as a preconditioner either for
an implicit S or for an inexact solve. We use Pardiso [5], a multithreaded sparse direct solver, for the
blocks in D. ShyLU can use two methods to form S̄ ≈ S: dropping and probing.

Dropping (value-based). With dropping we keep only the largest (in magnitude) entries of S. This is
a common strategy and was also used in HIPS and PDSLin. When forming S = G − R ∗ D−1C, we
simply drop entries less than a given threshold. We use a relative threshold, dropping entries that are
smaller relative to the diagonal entries.

Probing (structure-based), Probing was developed to approximate interfaces in domain decomposi-
tion [6]. In probing, we prescribe the sparsity pattern of S̄ ≈ S. Then we compute a set of probing
vectors, V , based on S̄. This gives rise to a coloring problem, where the number of colors correspond to
the number of probing vectors needed. We then apply S = G − RD−1C as an operator to the probing
vectors V to obtain SV , which gives us the numerical values for S̄. Choosing the sparsity pattern of S̄
can be tricky. For PDE problems where the values in S decay away from the diagonal, a band matrix
is often used [6]. To strengthen our preconditioner, we include the pattern of G in the probing pattern.
Thus the pattern of S̄ is pattern of B ∪G, where B is a banded matrix. More details on probing can be
found in [3]. We use the Isorropia package of Trilinos to compute the probing, which uses the Zoltan [7]
for parallel graph coloring.

2.3. Fast inexact solution with S. Once we have an approximate S, there exist multiple options to
solve using S and then solve for the entire system. A popular approach in hybrid methods is to solve
the Schur complement system iteratively using S̄ as a preconditioner. Since we need only an inexact
solve as a preconditioner, we can also simply solve for S̄ instead of for S. We solve for S̄ iteratively in
parallel, and we use yet another approximation S̃ ≈ S̄ as a preconditioner for S̄. In practice, S̃ can be
simple, for example, Jacobi or block Jacobi. Once the preconditioner (S̄ or S̃) and the operator for our
solve (either an implicit S or S̄) is decided, ShyLU uses the inner-outer iteration, with inner iteration
for the Schur complement and the outer iteration for the whole system.

3. NARROW SEPARATORS VS WIDE SEPARATORS

The algorithm in Section 2 depends on finding separators to partition the matrix into the bordered
form. Let (V1, V2, S) be a partition of the vertices V in a graph G(V,E). S is a separator if there is no
edge (v, w) such that v ∈ V1 and w ∈ V2. Separator S is called a wide separator if any path from V1 to
V2 contains at least two vertices in S. A separator that is not wide is called a narrow separator. Note
that the edge separator as computed by many of the partitioning packages is a wide separator.



A STUDY OF COMBINATORIAL ISSUES IN A SPARSE HYBRID SOLVER 3

Wide separators were originally used as part of ordering techniques for sparse Gaussian elimina-
tion [8]. The intended application at that time was sparse direct factorization [9]. We revisit this com-
parison with respect to hybrid solvers here.

The doubly bordered block diagonal form of a matrix A when we use a narrow separator is shown
below (for two parts).

Anarrow =


D11 0 C11 C12

0 D22 C21 C22

R11 R12 G11 G12

R21 R22 G21 G22

(2)

All the Rij blocks and Cij blocks can have nonzeros in them. As a result, every block in the Schur
complement might require communication when we compute it. For example, while using the matrix
from the narrow separator Anarrow, to compute the S11 block of the Schur complement, we do the
following.

S11 = G11 −R11 ∗D−1
1 ∗ C11 +R12 ∗D−1

2 ∗ C21(3)

Computing the Schur complement in the above form is expensive because of the communication
involved. However, the doubly bordered block diagonal form for two parts when we use a wide separator
has more structure to it, as shown below.

Awide =


D11 0 C11 0

0 D22 0 C22

R11 0 S11 S12
0 R22 S21 S22

(4)

Consider that rows of Dij are the interior vertices in part i and the rows in Rij are boundary vertices
in part i then we observe that all blocks Rij and Cij will be equal to zero when i 6= j. This follows from
the definition of the wide separator.

As R and C are block diagonal matrices, we can compute the Schur complement without any com-
munication. For example, to compute the S11 block of the Schur complement of Awide we do the
following.

S11 = G11 −R11 ∗D−1
1 ∗ C11(5)

Thus, computing S in the wide separator case is fully parallel. The off-diagonal blocks of the Schur
complement are equal to the off-diagonal blocks of G. However, the wide separator can be as much
as two times the size of the narrow separator. This results in a larger Schur complement system to be
solved when using the wide separator. In hybrid solvers, we solve the Schur complement system in
parallel as well. As a result, while the bigger Schur complement system leads to increased solve time,
the much faster setup due to increased parallelism offsets the small increase in solve time.

4. PARTITIONING METRICS

The algorithm described in Section 2 depends on finding a “good” partition. As a result, the per-
formance of the hybrid solver depends on the partitioning as well. Both hypergraph partitioning and
graph partitioning can be used to compute the wide separators described in Section 3. Though parti-
tioning algorithms are designed with iterative solvers as their target to optimize, these are the closest
tools available today. They are not too far apart in what they try to achieve. The load balance in each
subdomain is important as that is the amount of work in the direct factorization. However, in terms of
the metric they choose to minimize different partitioning algorithms help the hybrid solver in different
ways. We compare three options.

Hypergraph partitioning in Zoltan can use two different metrics.



4 ERIK G. BOMAN AND SIVASANKARAN RAJAMANICKAM

TABLE 1. Comparison of number of iterations and solve time of ShyLU for different
partitioning metrics

Matrix Method Rows Outer Solve Inner
Name Method in G Iter Time LB

wathen240K Graph 3940 10 2.61 1.10
Cutnet 5641 9 2.21 1.23

lambda 4201 9 2.31 1.22
bodyy5 Graph 577 59 0.68 1.08

Cutnet 523 55 0.64 1.05
lambda 533 55 0.644 1.05

Pres_Poisson Graph 1248 46 1.61 1.34
Cutnet 1472 40 1.63 1.42

lambda 1816 90 3.82 1.45
Lourakis Graph 3267 19 0.35 1.40

Cutnet 3279 19 0.68 2.21
lambda 3300 18 0.608 1.94

venkat50 Graph 1468 129 13.12 1.32
Cutnet 1608 170 16.87 1.18

lambda 1756 143 15.93 1.52
Xyce_1 Graph *

Cutnet 10330 1 0.15 1.64
lambda 9712 1 0.15 1.17

ckt11752_dc_1 Graph 957 214 9.88 1.46
Cutnet 650 * * 2.70

lambda 638 * * 2.52
memplus Graph 4917 357 7.75 1.33

Cutnet 4174 349 8.64 1.90
lambda 4604 299 6.43 1.38

• λ− 1 metric, which minimize the communication volume in the matrix vector multiplication.
• cutnet metric, which minimizes the number of cut hyperedges in the original hypegraph.

In terms of the hybrid solvers, the λ − 1 metric is useful because it minimizes the communication
volume in matrix-vector multiply of the outer iteration. In contrast, the cutnet metric actually minimizes
the number of rows in the Schur complement. The exact description of the metrics can be found at [7].
We could also use graph partitioning, which minimizes edge-cut metric. The edge cut metric minimizes
the number of off-diagonal entries in the G block.

In contrast, the following metric would be most useful for the hybrid solver:

• Minimize the communication volume in the outer iteration (as in the λ− 1 metric).
• Minimize the communication volume in the inner iteration.
• Balance the work in the inner iteration (or the number of boundary vertices).
• Minimize number of rows in G or the Schur complement (as given by the cutnet metric).

As none of the available tools minimize the multiple constraints given above, we study what is the best
approximation available for what is required by the solver. We compare the λ − 1 metric, the cutnet
metric, and the edge cut metric with respect to what is important for the hybrid solver—fewer outer
iterations and a better solve time.

We use matrices from the University of Florida sparse matrix collection as well as matrices from our
applications for these tests. All the tests were run on a desktop with four MPI tasks and one thread for
the direct solver. The results are shown in Table 1. We use Zoltan’s parallel hypergraph partitioning to
compute the hypergraph partitioning metrics and ParMETIS to compute the graph partitioning.

Some of the important observations from our test runs are as follows.

• No one metric works best for all the problems when the target usage is in hybrid solvers.



A STUDY OF COMBINATORIAL ISSUES IN A SPARSE HYBRID SOLVER 5

FIGURE 2. Comparison of solve time of ShyLU for various values of imbalance
tolerance with the cutnet metric. The values are normalized for the solve time when
imbalance tolerance = 10%.

• The smallest Schur complement does not necessarily lead to best solve time (for example, see
the solve time for the matrix wathen240k).
• The load imbalance in the inner iteration can adversely affect the solve time even when the

Schur complement sizes are small (for example, both cutnet and λ − 1 metrics give smaller
Schur complement for the matrix Lourakis, but result in poor load balance for inner iteration,
and poor solve time.
• The smallest Schur complement need not even converge (for example, see the results for the

matrix ckt11752_dc_1).

As shown in Table 1, load imbalance in the inner iteration is important for better solver performance.
While most partitioning software allows a tolerance to be set for imbalance among different parts, there
is no recommended tolerance for hybrid solvers. The defaults vary a lot from one partitioner to the
other. In this subsection, we use the same matrices as before, in order to study the effect of how load
imbalance affects the size of the Schur complement and in turn the solver time.

As the load imbalance tolerance is relaxed, the Schur complement should get smaller; however, the
load imbalance will affect the triangular solves in each part will not be balanced and will adversely affect
the solve time. The results are shown in Figure 2. We normalize the results to the solve time when the
imbalance tolerance percentage is 10% (default in Zoltan). For most matrices an imbalance tolerance
of 8–10% is the best. There is one matrix, memplus, where 5% imbalance tolerance does better, and
another matrix, Lourakis, where 40% imbalance tolerance does better.

5. CONCLUSION

We studied some of the combinatorial problems in hybrid solvers such as ShyLU. Parallel graph col-
oring algorithms enabled us to do robust probing for hybrid solvers, which is implemented in ShyLU.
We argue that in a parallel context, especially with respect to hybrid solvers, wide separators have an
important role to play. We also compared different partitioning metrics with respect to solver perfor-
mance. No one partitioning metrics works well for all our test problems. More work is needed to use a
multiconstraint graph or hypergraph partitioning for the objectives of a hybrid solver. We also studied
what will be a good imbalance tolerance for partitioning tools. Our preliminary study shows 8–10% is a
good imbalance tolerance. A study of any of these combinatorial problems will help other applications
in computational science as well.



6 ERIK G. BOMAN AND SIVASANKARAN RAJAMANICKAM

REFERENCES

[1] J. Gaidamour and P. Henon. A parallel direct/iterative solver based on a Schur complement approach. Computational
Science and Engineering, IEEE International Conference on, 0:98–105, 2008.

[2] Ichitaro Yamazaki and Xiaoye S. Li. On techniques to improve robustness and scalability of a parallel hybrid linear
solver. In Proceedings of the 9th International Conference on High Performance Computing for Computational Science,
VECPAR’10, pages 421–434, Berlin, Heidelberg, 2011. Springer-Verlag.

[3] Sivasankaran Rajamanickam, Erik G. Boman, and Heroux Michael A. A hybrid-hybrid solver for manycore platforms.
Submitted.

[4] Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2nd edition, 2003.
[5] O. Schenk and K. Gärtner. Solving unsymmetric sparse systems of linear equations with PARDISO. Journal of Future

Generation Computer Systems, 20(3):475–487, 2004.
[6] Tony F. C. Chan and Tarek P. Mathew. The interface probing technique in domain decomposition. SIAM J. Matrix Anal.

Appl., 13:212–238, January 1992.
[7] K.D. Devine, E.G. Boman, R.T. Heaphy, R.H. Bisseling, and U.V. Catalyurek. Parallel hypergraph partitioning for scien-

tific computing. In Proc. of 20th International Parallel and Distributed Processing Symposium (IPDPS’06). IEEE, 2006.
[8] John R. Gilbert and Earl Zmijewski. A parallel graph partitioning algorithm for a message-passing multiprocessor. Inter-

national Journal of Parallel Programming, 16:427–449, 1987. 10.1007/BF01388998.
[9] Alan George, Michael T. Heath, Joseph Liu, and Esmond NG. Sparse Cholesky factorization on a local-memory multi-

processor. SIAM J. Sci. Stat. Comput., 9:327–340, March 1988.


